Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)This paper presents a comparative evaluation of power electronic control approaches for vibro-acoustic noise reduction in High Rotor-Pole Switched Reluctance Machines (HR-SRM). It carries out a fundamental analysis of approaches that can be used to target acoustic noise and vibration reduction. Based on the comprehensive study, four candidates for control have been identified and applied to the HR-SRM drive to evaluate their effectiveness and identify challenges. These four methods include phase advancing, current shaping based on field reconstruction, and random hysteresis band with and without spectrum shaping. The theoretical background, implementation, and vibro-acoustic noise reduction performance of each method are presented in detail. Comparative studies from simulation and experimental measurements have been used to identify the most effective solution to acoustic noise and vibration reduction in HR-SRM configuration.more » « less
-
Switched reluctance motors (SRM) have been seen as a potential candidate for automotive, aerospace as well as domestic applications and High-Rotor pole SRM (HR-SRM) present a significant advancement in this area. This machine configuration offers most of the the benefits offered by conventional SRMs and has shown significant benefits in efficiency and torque quality. However, HR-SRM has a narrower inductance profile with a lower saliency ratio as compared to a conventional SRM with an identical stator. This can make it inherently challenging to directly adopt mathematical models and sensorless control approaches currently in use. This paper presents a time-efficient analytical model for the characterization of a 6/10 SRM using an inductance model utilizing truncated Fourier series as well as multi-order polynomial curve-fitting algorithm. The inductance model is extended to accurately predict back-EMF and electromagnetic torque response towards obtaining a comprehensive model for every operating point of the machine during dynamic operation. The effectiveness of the proposed concept has analyzed for a prototype machine and verified using Finite Element Analysis (FEA).more » « less
An official website of the United States government
